Disruption of polycomb repressor complex-mediated gene silencing reactivates HIV-1 provirus in latently infected cells.
نویسندگان
چکیده
OBJECTIVES Persistent HIV-1 infections are characterized by a long silent infection period in resting CD4+ T cells, which allows them to escape the host immune response. Several HIV-1 latency mechanisms have been reported, but the molecular mechanism underlying polycomb repressor complex (PRC)-mediated HIV-1 latency remains poorly understood. METHODS Expression of PRC proteins in latent cells was measured by Western blot. Knockdowns of PRC genes were conducted by the specific siRNA and methylations at H3K27 on the proviral LTR were investigated by ChIP assay. RESULTS PRC proteins (EED, BMI-1, and RNF2) were dramatically downregulated in latent cells after PMA treatment. The downregulation of PRC proteins was followed by a decrease in the methylation of H3K27 and ubiquitination of H2AK119 in the PMA-treated latent cells. siRNA knockdowns of EED and BMI-1 also enhanced HIV-1 reactivation significantly in latently infected cells. By contrast, proteasomal inhibitor MG132 successfully abrogated the PMA-induced downregulation of PRCs. In particular, di-/tri-methylations of histone-3 in the proviral LTR was absent from latent cells after PMA treatment. CONCLUSIONS This study shows that PRC is strongly related to the control of HIV-1 latency and that PRC-breaking agents may be helpful for purging HIV-1 from latent reservoirs.
منابع مشابه
A lentiviral vector that activates latent human immunodeficiency virus-1 proviruses by the overexpression of tat and that kills the infected cells.
Despite the efficient HIV-1 replication blockage achieved with current highly active antiretroviral therapy (HAART) therapies, HIV-1 persists in the body and survives in a latent state that can last for the entire life of the patient. A long-lived reservoir of latently infected CD4(+) memory T cells represents the most important sanctuary for the virus and the greatest obstacle for viral eradic...
متن کاملHIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin
HIV-1 Vpr is an accessory protein that induces proteasomal degradation of multiple proteins. We recently showed that Vpr targets class I HDACs on chromatin for proteasomal degradation. Here we show that Vpr induces degradation of HDAC1 and HDAC3 in HIV-1 latently infected J-Lat cells. Degradation of HDAC1 and HDAC3 was also observed on the HIV-1 LTR and as a result, markers of active transcript...
متن کاملBlockage of CD59 Function Restores Activities of Neutralizing and Nonneutralizing Antibodies in Triggering Antibody-Dependent Complement-Mediated Lysis of HIV-1 Virions and Provirus-Activated Latently Infected Cells.
UNLABELLED Both HIV-1 virions and infected cells use their surface regulators of complement activation (RCA) to resist antibody-dependent complement-mediated lysis (ADCML). Blockage of the biological function of RCA members, particularly CD59 (a key RCA member that controls formation of the membrane attack complex at the terminal stage of the complement activation cascades via all three activat...
متن کاملSelective Histonedeacetylase Inhibitor M344 Intervenes in HIV-1 Latency through Increasing Histone Acetylation and Activation of NF-kappaB
BACKGROUND Histone deacetylase (HDAC) inhibitors present an exciting new approach to activate HIV production from latently infected cells to potentially enhance elimination of these cells and achieve a cure. M344, a novel HDAC inhibitor, shows robust activity in a variety of cancer cells and relatively low toxicity compared to trichostatin A (TSA). However, little is known about the effects and...
متن کاملHIV Provirus Stably Reproduces Parental Latent and Induced Transcription Phenotypes Regardless of the Chromosomal Integration Site
UNLABELLED Understanding the mechanisms of HIV proviral latency is essential for development of a means to eradicate infection and achieve a cure. We have previously described an in vitro latency model that reliably identifies HIV expression phenotypes of infected cells using a dual-fluorescence reporter virus. Our results have demonstrated that ∼50% of infected cells establish latency immediat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intervirology
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2014